2000 character limit reached
Convergence Rates for Regularized Optimal Transport via Quantization (2208.14391v3)
Published 30 Aug 2022 in math.OC, math.PR, and stat.ML
Abstract: We study the convergence of divergence-regularized optimal transport as the regularization parameter vanishes. Sharp rates for general divergences including relative entropy or $L{p}$ regularization, general transport costs and multi-marginal problems are obtained. A novel methodology using quantization and martingale couplings is suitable for non-compact marginals and achieves, in particular, the sharp leading-order term of entropically regularized 2-Wasserstein distance for all marginals with finite $(2+\delta)$-moment.
- From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage. Comm. Math. Phys., 307(3):791–815, 2011.
- M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM J. Math. Anal., 43(2):904–924, 2011.
- G. Alberti and L. Ambrosio. A geometrical approach to monotone functions in 𝐑nsuperscript𝐑𝑛{\bf R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Math. Z., 230(2):259–316, 1999.
- J. M. Altschuler and E. Boix-Adserà. Polynomial-time algorithms for multimarginal optimal transport problems with structure. Math. Program., 199(1-2, Ser. A):1107–1178, 2023.
- Asymptotics for semidiscrete entropic optimal transport. SIAM J. Math. Anal., 54(2):1718–1741, 2022.
- Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm. Numer. Math., 142(1):33–54, 2019.
- O. Bencheikh and B. Jourdain. Approximation rate in Wasserstein distance of probability measures on the real line by deterministic empirical measures. J. Approx. Theory, 274:Paper No. 105684, 27, 2022.
- R. J. Berman. The Sinkhorn algorithm, parabolic optimal transport and geometric Monge-Ampère equations. Numer. Math., 145(4):771–836, 2020.
- Entropic optimal transport: Geometry and large deviations. Duke Math. J., 171(16):3363–3400, 2022.
- Towards optimal running times for optimal transport. Preprint arXiv:1810.07717v1, 2018.
- Smooth and sparse optimal transport. volume 84 of Proceedings of Machine Learning Research, pages 880–889, 2018.
- L. A. Caffarelli. The regularity of mappings with a convex potential. J. Amer. Math. Soc., 5(1):99–104, 1992.
- L. A. Caffarelli. Boundary regularity of maps with convex potentials. II. Ann. of Math. (2), 144(3):453–496, 1996.
- G. Carlier. On the linear convergence of the multi-marginal Sinkhorn algorithm. SIAM J. Optim., 32(2):786–794, 2022.
- Convergence of entropic schemes for optimal transport and gradient flows. SIAM J. Math. Anal., 49(2):1385–1418, 2017.
- Entropic-Wasserstein barycenters: PDE characterization, regularity, and CLT. SIAM J. Math. Anal., 53(5):5880–5914, 2021.
- G. Carlier and M. Laborde. A differential approach to the multi-marginal Schrödinger system. SIAM J. Math. Anal., 52(1):709–717, 2020.
- Convergence rate of general entropic optimal transport costs. Calc. Var. Partial Differential Equations, 62(4):Paper No. 116, 28, 2023.
- On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint. J. Optim. Theory Appl., 169(2):671–691, 2016.
- J. Chevallier. Uniform decomposition of probability measures: quantization, clustering and rate of convergence. J. Appl. Probab., 55(4):1037–1045, 2018.
- Gradient estimates for the Schrödinger potentials: convergence to the Brenier map and quantitative stability. Preprint arXiv:2207.14262v1, 2022.
- Faster wasserstein distance estimation with the Sinkhorn divergence. In Advances in Neural Information Processing Systems, volume 33, pages 2257–2269, 2020.
- R. Cominetti and J. San Martín. Asymptotic analysis of the exponential penalty trajectory in linear programming. Math. Programming, 67(2, Ser. A):169–187, 1994.
- G. Conforti and L. Tamanini. A formula for the time derivative of the entropic cost and applications. J. Funct. Anal., 280(11):108964, 2021.
- M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems 26, pages 2292–2300. 2013.
- S. Di Marino and A. Gerolin. Optimal transport losses and Sinkhorn algorithm with general convex regularization. Preprint arXiv:2007.00976v1, 2020.
- Wasserstein gradient flows from large deviations of many-particle limits. ESAIM Control Optim. Calc. Var., 19(4):1166–1188, 2013.
- S. Eckstein and M. Nutz. Quantitative stability of regularized optimal transport and convergence of Sinkhorn’s algorithm. SIAM J. Math. Anal., 54(6):5922–5948, 2022.
- S. Eckstein and G. Pammer. Computational methods for adapted optimal transport. Preprint arXiv:2203.05005v1, 2022.
- From large deviations to Wasserstein gradient flows in multiple dimensions. Electron. Commun. Probab., 20(89), 2015.
- M. Essid and J. Solomon. Quadratically regularized optimal transport on graphs. SIAM J. Sci. Comput., 40(4):A1961–A1986, 2018.
- N. Fournier. Convergence in expected Wasserstein distance of the empirical measure: non-asymptotic explicit bounds in 𝐑nsuperscript𝐑𝑛{\bf R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Preprint arXiv:2209.00923v1, 2022.
- N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields, 162(3-4):707–738, 2015.
- W. Gangbo and A. Świȩch. Optimal maps for the multidimensional Monge-Kantorovich problem. Comm. Pure Appl. Math., 51(1):23–45, 1998.
- Stability of entropic optimal transport and Schrödinger bridges. J. Funct. Anal., 283(9):Paper No. 109622, 2022.
- N. Gigli and L. Tamanini. Second order differentiation formula on RCD*(K,N)superscriptRCD𝐾𝑁{\mathrm{RCD}}^{*}(K,N)roman_RCD start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_K , italic_N ) spaces. J. Eur. Math. Soc. (JEMS), 23(5):1727–1795, 2021.
- S. Graf and H. Luschgy. Foundations of quantization for probability distributions, volume 1730 of Lecture Notes in Mathematics. Springer, Berlin, 2000.
- C. Léonard. From the Schrödinger problem to the Monge-Kantorovich problem. J. Funct. Anal., 262(4):1879–1920, 2012.
- C. Léonard. A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst., 34(4):1533–1574, 2014.
- On efficient optimal transport: An analysis of greedy and accelerated mirror descent algorithms. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of PMLR, pages 3982–3991, 2019.
- G. Loeper. On the regularity of solutions of optimal transportation problems. Acta Math., 202(2):241–283, 2009.
- Quadratically regularized optimal transport. Appl. Math. Optim., 83(3):1919–1949, 2021.
- Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal., 177(2):151–183, 2005.
- L. Martins Bianco. Stochastic approximation in optimal transport. M1 Internship Report, Université Paris-Saclay, 2022.
- Rectifiability of optimal transportation plans. Canad. J. Math., 64(4):924–934, 2012.
- T. Mikami. Optimal control for absolutely continuous stochastic processes and the mass transportation problem. Electron. Comm. Probab., 7:199–213, 2002.
- T. Mikami. Monge’s problem with a quadratic cost by the zero-noise limit of hℎhitalic_h-path processes. Probab. Theory Related Fields, 129(2):245–260, 2004.
- G. J. Minty. Monotone (nonlinear) operators in Hilbert space. Duke Math. J., 29:341–346, 1962.
- M. Nutz. Introduction to Entropic Optimal Transport. Lecture notes, Columbia University, 2021. https://www.math.columbia.edu/~mnutz/docs/EOT_lecture_notes.pdf.
- M. Nutz and J. Wiesel. Entropic optimal transport: convergence of potentials. Probab. Theory Related Fields, 184(1-2):401–424, 2022.
- M. Nutz and J. Wiesel. Stability of Schrödinger potentials and convergence of Sinkhorn’s algorithm. Ann. Probab., 51(2):699–722, 2023.
- G. Pagès. Numerical probability. Universitext. Springer, Cham, 2018.
- S. Pal. On the difference between entropic cost and the optimal transport cost. Preprint arXiv:1905.12206v1, 2019.
- B. Pass. Multi-marginal optimal transport: theory and applications. ESAIM Math. Model. Numer. Anal., 49(6):1771–1790, 2015.
- G. Peyré and M. Cuturi. Computational optimal transport: With applications to data science. Foundations and Trends in Machine Learning, 11(5-6):355–607, 2019.
- A.-A. Pooladian and J. Niles-Weed. Entropic estimation of optimal transport maps. Preprint arXiv:2109.12004v1, 2021.
- H. L. Royden. Real analysis. Macmillan, New York, second edition, 1968.
- D. Terjék and D. González-Sánchez. Optimal transport with f𝑓fitalic_f-divergence regularization and generalized Sinkhorn algorithm. volume 151 of Proceedings of Machine Learning Research, pages 5135–5165, 2022.
- C. Villani. Optimal transport, old and new, volume 338 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 2009.
- J. Weed. An explicit analysis of the entropic penalty in linear programming. volume 75 of Proceedings of Machine Learning Research, pages 1841–1855, 2018.
- J. Weed and F. Bach. Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance. Bernoulli, 25(4A):2620–2648, 2019.
- C. Xu and A. Berger. Best finite constrained approximations of one-dimensional probabilities. J. Approx. Theory, 244:1–36, 2019.