Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence Rates for Regularized Optimal Transport via Quantization (2208.14391v3)

Published 30 Aug 2022 in math.OC, math.PR, and stat.ML

Abstract: We study the convergence of divergence-regularized optimal transport as the regularization parameter vanishes. Sharp rates for general divergences including relative entropy or $L{p}$ regularization, general transport costs and multi-marginal problems are obtained. A novel methodology using quantization and martingale couplings is suitable for non-compact marginals and achieves, in particular, the sharp leading-order term of entropically regularized 2-Wasserstein distance for all marginals with finite $(2+\delta)$-moment.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage. Comm. Math. Phys., 307(3):791–815, 2011.
  2. M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM J. Math. Anal., 43(2):904–924, 2011.
  3. G. Alberti and L. Ambrosio. A geometrical approach to monotone functions in 𝐑nsuperscript𝐑𝑛{\bf R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Math. Z., 230(2):259–316, 1999.
  4. J. M. Altschuler and E. Boix-Adserà. Polynomial-time algorithms for multimarginal optimal transport problems with structure. Math. Program., 199(1-2, Ser. A):1107–1178, 2023.
  5. Asymptotics for semidiscrete entropic optimal transport. SIAM J. Math. Anal., 54(2):1718–1741, 2022.
  6. Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm. Numer. Math., 142(1):33–54, 2019.
  7. O. Bencheikh and B. Jourdain. Approximation rate in Wasserstein distance of probability measures on the real line by deterministic empirical measures. J. Approx. Theory, 274:Paper No. 105684, 27, 2022.
  8. R. J. Berman. The Sinkhorn algorithm, parabolic optimal transport and geometric Monge-Ampère equations. Numer. Math., 145(4):771–836, 2020.
  9. Entropic optimal transport: Geometry and large deviations. Duke Math. J., 171(16):3363–3400, 2022.
  10. Towards optimal running times for optimal transport. Preprint arXiv:1810.07717v1, 2018.
  11. Smooth and sparse optimal transport. volume 84 of Proceedings of Machine Learning Research, pages 880–889, 2018.
  12. L. A. Caffarelli. The regularity of mappings with a convex potential. J. Amer. Math. Soc., 5(1):99–104, 1992.
  13. L. A. Caffarelli. Boundary regularity of maps with convex potentials. II. Ann. of Math. (2), 144(3):453–496, 1996.
  14. G. Carlier. On the linear convergence of the multi-marginal Sinkhorn algorithm. SIAM J. Optim., 32(2):786–794, 2022.
  15. Convergence of entropic schemes for optimal transport and gradient flows. SIAM J. Math. Anal., 49(2):1385–1418, 2017.
  16. Entropic-Wasserstein barycenters: PDE characterization, regularity, and CLT. SIAM J. Math. Anal., 53(5):5880–5914, 2021.
  17. G. Carlier and M. Laborde. A differential approach to the multi-marginal Schrödinger system. SIAM J. Math. Anal., 52(1):709–717, 2020.
  18. Convergence rate of general entropic optimal transport costs. Calc. Var. Partial Differential Equations, 62(4):Paper No. 116, 28, 2023.
  19. On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint. J. Optim. Theory Appl., 169(2):671–691, 2016.
  20. J. Chevallier. Uniform decomposition of probability measures: quantization, clustering and rate of convergence. J. Appl. Probab., 55(4):1037–1045, 2018.
  21. Gradient estimates for the Schrödinger potentials: convergence to the Brenier map and quantitative stability. Preprint arXiv:2207.14262v1, 2022.
  22. Faster wasserstein distance estimation with the Sinkhorn divergence. In Advances in Neural Information Processing Systems, volume 33, pages 2257–2269, 2020.
  23. R. Cominetti and J. San Martín. Asymptotic analysis of the exponential penalty trajectory in linear programming. Math. Programming, 67(2, Ser. A):169–187, 1994.
  24. G. Conforti and L. Tamanini. A formula for the time derivative of the entropic cost and applications. J. Funct. Anal., 280(11):108964, 2021.
  25. M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems 26, pages 2292–2300. 2013.
  26. S. Di Marino and A. Gerolin. Optimal transport losses and Sinkhorn algorithm with general convex regularization. Preprint arXiv:2007.00976v1, 2020.
  27. Wasserstein gradient flows from large deviations of many-particle limits. ESAIM Control Optim. Calc. Var., 19(4):1166–1188, 2013.
  28. S. Eckstein and M. Nutz. Quantitative stability of regularized optimal transport and convergence of Sinkhorn’s algorithm. SIAM J. Math. Anal., 54(6):5922–5948, 2022.
  29. S. Eckstein and G. Pammer. Computational methods for adapted optimal transport. Preprint arXiv:2203.05005v1, 2022.
  30. From large deviations to Wasserstein gradient flows in multiple dimensions. Electron. Commun. Probab., 20(89), 2015.
  31. M. Essid and J. Solomon. Quadratically regularized optimal transport on graphs. SIAM J. Sci. Comput., 40(4):A1961–A1986, 2018.
  32. N. Fournier. Convergence in expected Wasserstein distance of the empirical measure: non-asymptotic explicit bounds in 𝐑nsuperscript𝐑𝑛{\bf R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Preprint arXiv:2209.00923v1, 2022.
  33. N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields, 162(3-4):707–738, 2015.
  34. W. Gangbo and A. Świȩch. Optimal maps for the multidimensional Monge-Kantorovich problem. Comm. Pure Appl. Math., 51(1):23–45, 1998.
  35. Stability of entropic optimal transport and Schrödinger bridges. J. Funct. Anal., 283(9):Paper No. 109622, 2022.
  36. N. Gigli and L. Tamanini. Second order differentiation formula on RCD*⁢(K,N)superscriptRCD𝐾𝑁{\mathrm{RCD}}^{*}(K,N)roman_RCD start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_K , italic_N ) spaces. J. Eur. Math. Soc. (JEMS), 23(5):1727–1795, 2021.
  37. S. Graf and H. Luschgy. Foundations of quantization for probability distributions, volume 1730 of Lecture Notes in Mathematics. Springer, Berlin, 2000.
  38. C. Léonard. From the Schrödinger problem to the Monge-Kantorovich problem. J. Funct. Anal., 262(4):1879–1920, 2012.
  39. C. Léonard. A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst., 34(4):1533–1574, 2014.
  40. On efficient optimal transport: An analysis of greedy and accelerated mirror descent algorithms. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of PMLR, pages 3982–3991, 2019.
  41. G. Loeper. On the regularity of solutions of optimal transportation problems. Acta Math., 202(2):241–283, 2009.
  42. Quadratically regularized optimal transport. Appl. Math. Optim., 83(3):1919–1949, 2021.
  43. Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal., 177(2):151–183, 2005.
  44. L. Martins Bianco. Stochastic approximation in optimal transport. M1 Internship Report, Université Paris-Saclay, 2022.
  45. Rectifiability of optimal transportation plans. Canad. J. Math., 64(4):924–934, 2012.
  46. T. Mikami. Optimal control for absolutely continuous stochastic processes and the mass transportation problem. Electron. Comm. Probab., 7:199–213, 2002.
  47. T. Mikami. Monge’s problem with a quadratic cost by the zero-noise limit of hℎhitalic_h-path processes. Probab. Theory Related Fields, 129(2):245–260, 2004.
  48. G. J. Minty. Monotone (nonlinear) operators in Hilbert space. Duke Math. J., 29:341–346, 1962.
  49. M. Nutz. Introduction to Entropic Optimal Transport. Lecture notes, Columbia University, 2021. https://www.math.columbia.edu/~mnutz/docs/EOT_lecture_notes.pdf.
  50. M. Nutz and J. Wiesel. Entropic optimal transport: convergence of potentials. Probab. Theory Related Fields, 184(1-2):401–424, 2022.
  51. M. Nutz and J. Wiesel. Stability of Schrödinger potentials and convergence of Sinkhorn’s algorithm. Ann. Probab., 51(2):699–722, 2023.
  52. G. Pagès. Numerical probability. Universitext. Springer, Cham, 2018.
  53. S. Pal. On the difference between entropic cost and the optimal transport cost. Preprint arXiv:1905.12206v1, 2019.
  54. B. Pass. Multi-marginal optimal transport: theory and applications. ESAIM Math. Model. Numer. Anal., 49(6):1771–1790, 2015.
  55. G. Peyré and M. Cuturi. Computational optimal transport: With applications to data science. Foundations and Trends in Machine Learning, 11(5-6):355–607, 2019.
  56. A.-A. Pooladian and J. Niles-Weed. Entropic estimation of optimal transport maps. Preprint arXiv:2109.12004v1, 2021.
  57. H. L. Royden. Real analysis. Macmillan, New York, second edition, 1968.
  58. D. Terjék and D. González-Sánchez. Optimal transport with f𝑓fitalic_f-divergence regularization and generalized Sinkhorn algorithm. volume 151 of Proceedings of Machine Learning Research, pages 5135–5165, 2022.
  59. C. Villani. Optimal transport, old and new, volume 338 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 2009.
  60. J. Weed. An explicit analysis of the entropic penalty in linear programming. volume 75 of Proceedings of Machine Learning Research, pages 1841–1855, 2018.
  61. J. Weed and F. Bach. Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance. Bernoulli, 25(4A):2620–2648, 2019.
  62. C. Xu and A. Berger. Best finite constrained approximations of one-dimensional probabilities. J. Approx. Theory, 244:1–36, 2019.
Citations (23)

Summary

We haven't generated a summary for this paper yet.