Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$\widehat{\mathcal{D}}^{(0)}_{\mathfrak{X}, k, \mathbb{Q}}$-modules holonomes sur une courbe formelle (2208.14387v3)

Published 29 Aug 2022 in math.AG

Abstract: Let $\mathfrak{X}$ be a formal smooth curve over a complete discrete valuation ring $\mathcal{V}$ of mixed characteristic $(0 , p)$. Let $\widehat{\mathcal{D}}{(0)}_{\mathfrak{X}, \mathbb{Q}}$ be the sheaf of crystalline differential operators of level 0 (i.e., generated by the derivations). In this situation, Garnier proved that holonomic $\widehat{\mathcal{D}}{(0)}_{\mathfrak{X}, \mathbb{Q}}$-modules as defined by Berthelot have finite length. In this article, we address this question for the sheaves $\widehat{\mathcal{D}}{(0)}_{\mathfrak{X}, k , \mathbb{Q}}$ of congruence level $k$ defined by Christine Huyghe, Tobias Schmidt and Matthias Strauch. Using the same strategy as Garnier, we prove that holonomic $\widehat{\mathcal{D}}{(0)}_{\mathfrak{X}, k , \mathbb{Q}}$-modules have finite length. We finally give an application to coadmissible modules by proving that coadmissible modules with integrable connection over curves have finite length.

Summary

We haven't generated a summary for this paper yet.