Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Primal-Dual Algorithm Framework for Inequality Constrained Problems (2208.14196v1)

Published 30 Aug 2022 in math.OC

Abstract: In this paper, we propose a unified primal-dual algorithm framework based on the augmented Lagrangian function for composite convex problems with conic inequality constraints. The new framework is highly versatile. First, it not only covers many existing algorithms such as PDHG, Chambolle-Pock (CP), GDA, OGDA and linearized ALM, but also guides us to design a new efficient algorithm called Simi-OGDA (SOGDA). Second, it enables us to study the role of the augmented penalty term in the convergence analysis. Interestingly, a properly selected penalty not only improves the numerical performance of the above methods, but also theoretically enables the convergence of algorithms like PDHG and SOGDA. Under properly designed step sizes and penalty term, our unified framework preserves the $\mathcal{O}(1/N)$ ergodic convergence while not requiring any prior knowledge about the magnitude of the optimal Lagrangian multiplier. Linear convergence rate for affine equality constrained problem is also obtained given appropriate conditions. Finally, numerical experiments on linear programming, $\ell_1$ minimization problem, and multi-block basis pursuit problem demonstrate the efficiency of our methods.

Citations (5)

Summary

We haven't generated a summary for this paper yet.