Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An orthogonal relation on inverse cyclotomic polynomials (2208.14147v1)

Published 30 Aug 2022 in math.NT

Abstract: Let $\Phi_n(X)$ and $\Psi_n(X)=\frac{X{n}-1}{\Phi_{n}(X)}$ be the $n$-th cyclotomic and inverse cyclotomic polynomials respectively. In this short note, for any pair of divisors $ d_{1} \neq d_{2} $ of $ n $, and integers $l_1$ and $l_2$ such that $ 0 \leq l_{1} \leq \varphi(d_{1})-1 $ and $ 0 \leq l_{2} \leq \varphi(d_{2})-1 $, we show that [\left \langle X{l_{1}} \Psi_{d_{1}}(X) (1+X{d_1}+\dots X{n-d_1}), X{l_{2}} \Psi_{d_{2}}(X) (1+X{d_2}+\dots X{n-d_2}) \right \rangle =0, ] where $ \langle \cdot, \cdot \rangle $ is the inner product on $\mathbb{Q}[X]$ defined by $ \langle \sum_{k} a_{k}X{k},\sum_{k} b_{k}X{k} \rangle =\sum_{k} a_{k}b_{k}$.

Summary

We haven't generated a summary for this paper yet.