Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed CPU Scheduling Subject to Nonlinear Constraints (2208.14059v1)

Published 30 Aug 2022 in eess.SY, cs.SY, and math.OC

Abstract: This paper considers a network of collaborating agents for local resource allocation subject to nonlinear model constraints. In many applications, it is required (or desirable) that the solution be anytime feasible in terms of satisfying the sum-preserving global constraint. Motivated by this, sufficient conditions on the nonlinear mapping for anytime feasibility (or non-asymptotic feasibility) are addressed in this paper. For the two proposed distributed solutions, one converges over directed weight-balanced networks and the other one over undirected networks. In particular, we elaborate on uniform quantization and discuss the notion of {\epsilon}-accurate solution, which gives an estimate of how close we can get to the exact optimizer subject to different quantization levels. This work, further, handles general (possibly non-quadratic) strictly convex objective functions with application to CPU allocation among a cloud of data centers via distributed solutions. The results can be used as a coordination mechanism to optimally balance the tasks and CPU resources among a group of networked servers while addressing quantization or limited server capacity. Index Terms: multi-agent systems, sum-preserving resource allocation, distributed optimization, anytime feasibility

Citations (3)

Summary

We haven't generated a summary for this paper yet.