Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Positive Difference Distribution for Image Outlier Detection using Normalizing Flows and Contrastive Data (2208.14024v2)

Published 30 Aug 2022 in cs.LG

Abstract: Detecting test data deviating from training data is a central problem for safe and robust machine learning. Likelihoods learned by a generative model, e.g., a normalizing flow via standard log-likelihood training, perform poorly as an outlier score. We propose to use an unlabelled auxiliary dataset and a probabilistic outlier score for outlier detection. We use a self-supervised feature extractor trained on the auxiliary dataset and train a normalizing flow on the extracted features by maximizing the likelihood on in-distribution data and minimizing the likelihood on the contrastive dataset. We show that this is equivalent to learning the normalized positive difference between the in-distribution and the contrastive feature density. We conduct experiments on benchmark datasets and compare to the likelihood, the likelihood ratio and state-of-the-art anomaly detection methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.