Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Debiasing Word Embeddings with Nonlinear Geometry (2208.13899v1)

Published 29 Aug 2022 in cs.CL and cs.AI

Abstract: Debiasing word embeddings has been largely limited to individual and independent social categories. However, real-world corpora typically present multiple social categories that possibly correlate or intersect with each other. For instance, "hair weaves" is stereotypically associated with African American females, but neither African American nor females alone. Therefore, this work studies biases associated with multiple social categories: joint biases induced by the union of different categories and intersectional biases that do not overlap with the biases of the constituent categories. We first empirically observe that individual biases intersect non-trivially (i.e., over a one-dimensional subspace). Drawing from the intersectional theory in social science and the linguistic theory, we then construct an intersectional subspace to debias for multiple social categories using the nonlinear geometry of individual biases. Empirical evaluations corroborate the efficacy of our approach. Data and implementation code can be downloaded at https://github.com/GitHubLuCheng/Implementation-of-JoSEC-COLING-22.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lu Cheng (73 papers)
  2. Nayoung Kim (13 papers)
  3. Huan Liu (283 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.