Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CH-MARL: A Multimodal Benchmark for Cooperative, Heterogeneous Multi-Agent Reinforcement Learning (2208.13626v1)

Published 26 Aug 2022 in cs.AI, cs.CV, cs.LG, cs.MA, and cs.RO

Abstract: We propose a multimodal (vision-and-language) benchmark for cooperative and heterogeneous multi-agent learning. We introduce a benchmark multimodal dataset with tasks involving collaboration between multiple simulated heterogeneous robots in a rich multi-room home environment. We provide an integrated learning framework, multimodal implementations of state-of-the-art multi-agent reinforcement learning techniques, and a consistent evaluation protocol. Our experiments investigate the impact of different modalities on multi-agent learning performance. We also introduce a simple message passing method between agents. The results suggest that multimodality introduces unique challenges for cooperative multi-agent learning and there is significant room for advancing multi-agent reinforcement learning methods in such settings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Vasu Sharma (31 papers)
  2. Prasoon Goyal (11 papers)
  3. Kaixiang Lin (22 papers)
  4. Govind Thattai (25 papers)
  5. Qiaozi Gao (20 papers)
  6. Gaurav S. Sukhatme (88 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.