Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eilenberg-Moore spectral sequence and Hodge cohomology of classifying stacks (2208.13551v1)

Published 29 Aug 2022 in math.AG, math.AT, and math.RT

Abstract: Let $G$ be a smooth connected reductive group over a field $k$ and $\Gamma$ be a central subgroup of $G$. We construct Eilenberg-Moore-type spectral sequences converging to the Hodge and de Rham cohomology of $B(G/\Gamma)$. As an application, building upon work of Toda and using Totaro's inequality, we show that for all $m\geq 0$ the Hodge and de Rham cohomology algebras of the classifying stacks $B\mathrm{PGL}{4m+2}$ and $B\mathrm{PSO}{4m+2}$ over $\mathbb{F}2$ are isomorphic to the singular $\mathbb{F}_2$-cohomology of the classifying space of the corresponding Lie group. From this we obtain a full description of $H{>0}(\mathrm{GL}{4m+2}, \operatorname{Sym}j(\mathfrak{pgl}_{4m+2}\vee))$ and $H{>0}(\mathrm{SO}_{4m+2}, \operatorname{Sym}j(\mathfrak{pso}_{4m+2}\vee))$ over $\mathbb{F}_2$.

Summary

We haven't generated a summary for this paper yet.