Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards In-distribution Compatibility in Out-of-distribution Detection (2208.13433v1)

Published 29 Aug 2022 in cs.CV and cs.LG

Abstract: Deep neural network, despite its remarkable capability of discriminating targeted in-distribution samples, shows poor performance on detecting anomalous out-of-distribution data. To address this defect, state-of-the-art solutions choose to train deep networks on an auxiliary dataset of outliers. Various training criteria for these auxiliary outliers are proposed based on heuristic intuitions. However, we find that these intuitively designed outlier training criteria can hurt in-distribution learning and eventually lead to inferior performance. To this end, we identify three causes of the in-distribution incompatibility: contradictory gradient, false likelihood, and distribution shift. Based on our new understandings, we propose a new out-of-distribution detection method by adapting both the top-design of deep models and the loss function. Our method achieves in-distribution compatibility by pursuing less interference with the probabilistic characteristic of in-distribution features. On several benchmarks, our method not only achieves the state-of-the-art out-of-distribution detection performance but also improves the in-distribution accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.