Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-implicit energy-preserving numerical schemes for stochastic wave equation via SAV approach (2208.13394v1)

Published 29 Aug 2022 in math.NA and cs.NA

Abstract: In this paper, we propose and analyze semi-implicit numerical schemes for the stochastic wave equation (SWE) with general nonlinearity and multiplicative noise. These numerical schemes, called stochastic scalar auxiliary variable (SAV) schemes, are constructed by transforming the considered SWE into a higher dimensional stochastic system with a stochastic SAV. We prove that they can be solved explicitly and preserve the modified energy evolution law and the regularity structure of the original system. These structure-preserving properties are the keys to overcoming the mutual effect of the noise and nonlinearity. By proving new regularity estimates of the introduced SAV, we establish the strong convergence rate of stochastic SAV schemes and the further fully-discrete schemes with the finite element method in spatial direction. To the best of our knowledge, this is the first result on the construction and strong convergence of semi-implicit energy-preserving schemes for nonlinear SWE.

Citations (4)

Summary

We haven't generated a summary for this paper yet.