Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reweighting Strategy based on Synthetic Data Identification for Sentence Similarity (2208.13376v2)

Published 29 Aug 2022 in cs.CL

Abstract: Semantically meaningful sentence embeddings are important for numerous tasks in natural language processing. To obtain such embeddings, recent studies explored the idea of utilizing synthetically generated data from pretrained LLMs (PLMs) as a training corpus. However, PLMs often generate sentences much different from the ones written by human. We hypothesize that treating all these synthetic examples equally for training deep neural networks can have an adverse effect on learning semantically meaningful embeddings. To analyze this, we first train a classifier that identifies machine-written sentences, and observe that the linguistic features of the sentences identified as written by a machine are significantly different from those of human-written sentences. Based on this, we propose a novel approach that first trains the classifier to measure the importance of each sentence. The distilled information from the classifier is then used to train a reliable sentence embedding model. Through extensive evaluation on four real-world datasets, we demonstrate that our model trained on synthetic data generalizes well and outperforms the existing baselines. Our implementation is publicly available at https://github.com/ddehun/coling2022_reweighting_sts.

Citations (1)

Summary

We haven't generated a summary for this paper yet.