Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ANAct: Adaptive Normalization for Activation Functions (2208.13315v3)

Published 29 Aug 2022 in cs.LG and cs.AI

Abstract: In this paper, we investigate the negative effect of activation functions on forward and backward propagation and how to counteract this effect. First, We examine how activation functions affect the forward and backward propagation of neural networks and derive a general form for gradient variance that extends the previous work in this area. We try to use mini-batch statistics to dynamically update the normalization factor to ensure the normalization property throughout the training process, rather than only accounting for the state of the neural network after weight initialization. Second, we propose ANAct, a method that normalizes activation functions to maintain consistent gradient variance across layers and demonstrate its effectiveness through experiments. We observe that the convergence rate is roughly related to the normalization property. We compare ANAct with several common activation functions on CNNs and residual networks and show that ANAct consistently improves their performance. For instance, normalized Swish achieves 1.4\% higher top-1 accuracy than vanilla Swish on ResNet50 with the Tiny ImageNet dataset and more than 1.2\% higher with CIFAR-100.

Citations (1)

Summary

We haven't generated a summary for this paper yet.