Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FFCNN: Fast FPGA based Acceleration for Convolution neural network inference (2208.13250v1)

Published 28 Aug 2022 in cs.LG, cs.AI, cs.AR, and cs.CV

Abstract: We present a new efficient OpenCL-based Accelerator for large scale Convolutional Neural Networks called Fast Inference on FPGAs for Convolution Neural Network (FFCNN). FFCNN is based on a deeply pipelined OpenCL kernels architecture. As pointed out before, high-level synthesis tools such as the OpenCL framework can easily port codes originally designed for CPUs and GPUs to FPGAs, but it is still difficult to make OpenCL codes run efficiently on FPGAs. This work aims to propose an efficient FPGA implementation of OpenCL High-Performance Computing Applications. To do so, a Data reuse and task mapping techniques are also presented to improve design efficiency. In addition, the following motivations were taken into account when developing FFCNN: 1) FFCNN has been designed to be easily implemented on Intel OpenCL SDK based FPGA design flow. 2) In FFFCN, different techniques have been integrated to improve the memory band with and throughput. A performance analysis is conducted on two deep CNN for Large-Scale Images classification. The obtained results, and the comparison with other works designed to accelerate the same types of architectures, show the efficiency and the competitiveness of the proposed accelerator design by significantly improved performance and resource utilization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. F. Keddous (1 paper)
  2. H-N. Nguyen (1 paper)
  3. A. Nakib (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.