Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Reformulation of Gaussian Completely Monotone Conjecture: A Hodge Structure on the Fisher Information along Heat Flow (2208.13108v1)

Published 28 Aug 2022 in cs.IT, math-ph, math.AG, math.IT, and math.MP

Abstract: In the past decade, J. Huh solved several long-standing open problems on log-concave sequences in combinatorics. The ground-breaking techniques developed in those work are from algebraic geometry: "We believe that behind any log-concave sequence that appears in nature there is such a Hodge structure responsible for the log-concavity". A function is called completely monotone if its derivatives alternate in signs; e.g., $e{-t}$. A fundamental conjecture in mathematical physics and Shannon information theory is on the complete monotonicity of Gaussian distribution (GCMC), which states that $I(X+Z_t)$\footnote{The probability density function of $X+Z_t$ is called "heat flow" in mathematical physics.} is completely monotone in $t$, where $I$ is Fisher information, random variables $X$ and $Z_t$ are independent and $Z_t\sim\mathcal{N}(0,t)$ is Gaussian. Inspired by the algebraic geometry method introduced by J. Huh, GCMC is reformulated in the form of a log-convex sequence. In general, a completely monotone function can admit a log-convex sequence and a log-convex sequence can further induce a log-concave sequence. The new formulation may guide GCMC to the marvelous temple of algebraic geometry. Moreover, to make GCMC more accessible to researchers from both information theory and mathematics\footnote{The author was not familiar with algebraic geometry. The paper is also aimed at providing people outside information theory of necessary background on the history of GCMC in theory and application.}, together with some new findings, a thorough summary of the origin, the implication and further study on GCMC is presented.

Citations (1)

Summary

We haven't generated a summary for this paper yet.