Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Four Algorithms for Correlation Clustering: A Survey (2208.12636v1)

Published 24 Aug 2022 in cs.DS and cs.LG

Abstract: In the Correlation Clustering problem, we are given a set of objects with pairwise similarity information. Our aim is to partition these objects into clusters that match this information as closely as possible. More specifically, the pairwise information is given as a weighted graph $G$ with its edges labelled as similar" ordissimilar" by a binary classifier. The goal is to produce a clustering that minimizes the weight of ``disagreements": the sum of the weights of similar edges across clusters and dissimilar edges within clusters. In this exposition we focus on the case when $G$ is complete and unweighted. We explore four approximation algorithms for the Correlation Clustering problem under this assumption. In particular, we describe the following algorithms: (i) the $17429-$approximation algorithm by Bansal, Blum, and Chawla, (ii) the $4-$approximation algorithm by Charikar, Guruswami, and Wirth (iii) the $3-$approximation algorithm by Ailon, Charikar, and Newman (iv) the $2.06-$approximation algorithm by Chawla, Makarychev, Schramm, and Yaroslavtsev.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jafar Jafarov (9 papers)

Summary

We haven't generated a summary for this paper yet.