Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A structure-preserving numerical method for the fourth-order geometric evolution equations for planar curves (2208.12473v1)

Published 26 Aug 2022 in math.NA and cs.NA

Abstract: For fourth-order geometric evolution equations for planar curves with the dissipation of the bending energy, including the WiLLMore and the Helfrich flows, we consider a numerical approach. In this study, we construct a structure-preserving method based on a discrete variational derivative method. Furthermore, to prevent the vertex concentration that may lead to numerical instability, we discretely introduce Deckelnick's tangential velocity. Here, a modification term is introduced in the process of adding tangential velocity. This modified term enables the method to reproduce the equations' properties while preventing vertex concentration. Numerical experiments demonstrate that the proposed approach captures the equations' properties with high accuracy and avoids the concentration of vertices.

Citations (1)

Summary

We haven't generated a summary for this paper yet.