Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Mitoses with a Convolutional Neural Network for MIDOG 2022 Challenge (2208.12437v2)

Published 26 Aug 2022 in cs.CV

Abstract: This work presents a mitosis detection method with only one vanilla Convolutional Neural Network (CNN). Our method consists of two steps: given an image, we first apply a CNN using a sliding window technique to extract patches that have mitoses; we then calculate each extracted patch's class activation map to obtain the mitosis's precise location. To increase the model performance on high-domain-variance pathology images, we train the CNN with a data augmentation pipeline, a noise-tolerant loss that copes with unlabeled images, and a multi-rounded active learning strategy. In the MIDOG 2022 challenge, our approach, with an EfficientNet-b3 CNN model, achieved an overall F1 score of 0.7323 in the preliminary test phase, and 0.6847 in the final test phase (task 1). Our approach sheds light on the broader applicability of class activation maps for object detections in pathology images.

Citations (7)

Summary

We haven't generated a summary for this paper yet.