Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

JAXFit: Trust Region Method for Nonlinear Least-Squares Curve Fitting on the GPU (2208.12187v1)

Published 25 Aug 2022 in cs.LG, cs.NA, math.NA, and stat.ML

Abstract: We implement a trust region method on the GPU for nonlinear least squares curve fitting problems using a new deep learning Python library called JAX. Our open source package, JAXFit, works for both unconstrained and constrained curve fitting problems and allows the fit functions to be defined in Python alone -- without any specialized knowledge of either the GPU or CUDA programming. Since JAXFit runs on the GPU, it is much faster than CPU based libraries and even other GPU based libraries, despite being very easy to use. Additionally, due to JAX's deep learning foundations, the Jacobian in JAXFit's trust region algorithm is calculated with automatic differentiation, rather than than using derivative approximations or requiring the user to define the fit function's partial derivatives.

Citations (1)

Summary

We haven't generated a summary for this paper yet.