Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Coefficient ideals (2208.12147v1)

Published 25 Aug 2022 in math.AC

Abstract: Let $(A,\mathfrak{m})$ be a Cohen-Macaulay local ring of dimension $d \geq 2$ with infinite residue field and let $I$ be an $\mathfrak{m}$-primary ideal. For $0 \leq i \leq d$ let $I_i$ be the $i{th}$-coefficient ideal of $I$. Also let $\widetilde{I} = I_d$ denote the Ratliff-Rush closure of $A$. Let $G = G_I(A)$ be the associated graded ring of $I$. We show that if $\dim Hj_{G_+}(G)\vee \leq j -1$ for $1 \leq j \leq i \leq d-1$ then $(In)_{d-i} = \widetilde{In}$ for all $n \geq 1$. In particular if $G$ is generalized Cohen-Macaulay then $(In)_1 = \widetilde{In}$ for all $n \geq 1$. As a consequence we get that if $A$ is an analytically unramified domain with $G$ generalized Cohen-Macaulay, then the $S_2$-ification of the Rees algebra $ A[It]$ is $\bigoplus_{n \geq 0} \widetilde{In}$.

Summary

We haven't generated a summary for this paper yet.