Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Perception Transformer for Temporal Action Localization (2208.11908v2)

Published 25 Aug 2022 in cs.CV

Abstract: Temporal action localization aims to predict the boundary and category of each action instance in untrimmed long videos. Most of previous methods based on anchors or proposals neglect the global-local context interaction in entire video sequences. Besides, their multi-stage designs cannot generate action boundaries and categories straightforwardly. To address the above issues, this paper proposes a end-to-end model, called Adaptive Perception transformer (AdaPerFormer for short). Specifically, AdaPerFormer explores a dual-branch attention mechanism. One branch takes care of the global perception attention, which can model entire video sequences and aggregate global relevant contexts. While the other branch concentrates on the local convolutional shift to aggregate intra-frame and inter-frame information through our bidirectional shift operation. The end-to-end nature produces the boundaries and categories of video actions without extra steps. Extensive experiments together with ablation studies are provided to reveal the effectiveness of our design. Our method obtains competitive performance on the THUMOS14 and ActivityNet-1.3 dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yizheng Ouyang (1 paper)
  2. Tianjin Zhang (6 papers)
  3. Weibo Gu (4 papers)
  4. Hongfa Wang (29 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.