Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Privacy-Preserving and End-to-End-Based Encrypted Image Retrieval Scheme (2208.11876v1)

Published 25 Aug 2022 in cs.MM

Abstract: Applying encryption technology to image retrieval can ensure the security and privacy of personal images. The related researches in this field have focused on the organic combination of encryption algorithm and artificial feature extraction. Many existing encrypted image retrieval schemes cannot prevent feature leakage and file size increase or cannot achieve satisfied retrieval performance. In this paper, A new end-to-end encrypted image retrieval scheme is presented. First, images are encrypted by using block rotation, new orthogonal transforms and block permutation during the JPEG compression process. Second, we combine the triplet loss and the cross entropy loss to train a network model, which contains gMLP modules, by end-to-end learning for extracting cipher-images' features. Compared with manual features extraction such as extracting color histogram, the end-to-end mechanism can economize on manpower. Experimental results show that our scheme has good retrieval performance, while can ensure compression friendly and no feature leakage.

Citations (4)

Summary

We haven't generated a summary for this paper yet.