Nonlocal Bounded Variations with Applications (2208.11746v1)
Abstract: Motivated by problems where jumps across lower dimensional subsets and sharp transitions across interfaces are of interest, this paper studies the properties of fractional bounded variation ($BV$)-type spaces. Two different natural fractional analogs of classical $BV$ are considered: $BV\alpha$, a space induced from the Riesz-fractional gradient that has been recently studied by Comi-Stefani; and $bv\alpha$, induced by the Gagliardo-type fractional gradient often used in Dirichlet forms and Peridynamics - this one is naturally related to the Caffarelli-Roquejoffre-Savin fractional perimeter. Our main theoretical result is that the latter $bv\alpha$ actually corresponds to the Gagliardo-Slobodeckij space $W{\alpha,1}$. As an application, using the properties of these spaces, novel image denoising models are introduced and their corresponding Fenchel pre-dual formulations are derived. The latter requires density of smooth functions with compact support. We establish this density property for convex domains.