Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ontology-Driven Self-Supervision for Adverse Childhood Experiences Identification Using Social Media Datasets (2208.11701v1)

Published 24 Aug 2022 in cs.CL and cs.LG

Abstract: Adverse Childhood Experiences (ACEs) are defined as a collection of highly stressful, and potentially traumatic, events or circumstances that occur throughout childhood and/or adolescence. They have been shown to be associated with increased risks of mental health diseases or other abnormal behaviours in later lives. However, the identification of ACEs from textual data with NLP is challenging because (a) there are no NLP ready ACE ontologies; (b) there are few resources available for machine learning, necessitating the data annotation from clinical experts; (c) costly annotations by domain experts and large number of documents for supporting large machine learning models. In this paper, we present an ontology-driven self-supervised approach (derive concept embeddings using an auto-encoder from baseline NLP results) for producing a publicly available resource that would support large-scale machine learning (e.g., training transformer based LLMs) on social media corpus. This resource as well as the proposed approach are aimed to facilitate the community in training transferable NLP models for effectively surfacing ACEs in low-resource scenarios like NLP on clinical notes within Electronic Health Records. The resource including a list of ACE ontology terms, ACE concept embeddings and the NLP annotated corpus is available at https://github.com/knowlab/ACE-NLP.

Citations (1)

Summary

We haven't generated a summary for this paper yet.