Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collective Intelligence in Human-AI Teams: A Bayesian Theory of Mind Approach (2208.11660v4)

Published 24 Aug 2022 in cs.HC

Abstract: We develop a network of Bayesian agents that collectively model the mental states of teammates from the observed communication. Using a generative computational approach to cognition, we make two contributions. First, we show that our agent could generate interventions that improve the collective intelligence of a human-AI team beyond what humans alone would achieve. Second, we develop a real-time measure of human's theory of mind ability and test theories about human cognition. We use data collected from an online experiment in which 145 individuals in 29 human-only teams of five communicate through a chat-based system to solve a cognitive task. We find that humans (a) struggle to fully integrate information from teammates into their decisions, especially when communication load is high, and (b) have cognitive biases which lead them to underweight certain useful, but ambiguous, information. Our theory of mind ability measure predicts both individual- and team-level performance. Observing teams' first 25% of messages explains about 8% of the variation in final team performance, a 170% improvement compared to the current state of the art.

Citations (17)

Summary

We haven't generated a summary for this paper yet.