Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prostate Lesion Detection and Salient Feature Assessment Using Zone-Based Classifiers (2208.11522v1)

Published 24 Aug 2022 in eess.IV and cs.CV

Abstract: Multi-parametric magnetic resonance imaging (mpMRI) has a growing role in detecting prostate cancer lesions. Thus, it is pertinent that medical professionals who interpret these scans reduce the risk of human error by using computer-aided detection systems. The variety of algorithms used in system implementation, however, has yielded mixed results. Here we investigate the best machine learning classifier for each prostate zone. We also discover salient features to clarify the models' classification rationale. Of the data provided, we gathered and augmented T2 weighted images and apparent diffusion coefficient map images to extract first through third order statistical features as input to machine learning classifiers. For our deep learning classifier, we used a convolutional neural net (CNN) architecture for automatic feature extraction and classification. The interpretability of the CNN results was improved by saliency mapping to understand the classification mechanisms within. Ultimately, we concluded that effective detection of peripheral and anterior fibromuscular stroma (AS) lesions depended more on statistical distribution features, whereas those in the transition zone (TZ) depended more on textural features. Ensemble algorithms worked best for PZ and TZ zones, while CNNs were best in the AS zone. These classifiers can be used to validate a radiologist's predictions and reduce inter-reader variability in patients suspected to have prostate cancer. The salient features reported in this study can also be investigated further to better understand hidden features and biomarkers of prostate lesions with mpMRIs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Haoli Yin (3 papers)
  2. Nithin Buduma (1 paper)
Citations (2)

Summary

We haven't generated a summary for this paper yet.