Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deterministic Fault-Tolerant Connectivity Labeling Scheme (2208.11459v3)

Published 24 Aug 2022 in cs.DS and cs.DC

Abstract: The \emph{$f$-fault-tolerant connectivity labeling} ($f$-FTC labeling) is a scheme of assigning each vertex and edge with a small-size label such that one can determine the connectivity of two vertices $s$ and $t$ under the presence of at most $f$ faulty edges only from the labels of $s$, $t$, and the faulty edges. This paper presents a new deterministic $f$-FTC labeling scheme attaining $O(f2 \mathrm{polylog}(n))$-bit label size and a polynomial construction time, which settles the open problem left by Dory and Parter [PODC'21]. The key ingredient of our construction is to develop a deterministic counterpart of the graph sketch technique by Ahn, Guha, and McGreger [SODA'12], via some natural connection with the theory of error-correcting codes. This technique removes one major obstacle in de-randomizing the Dory-Parter scheme. The whole scheme is obtained by combining this technique with a new deterministic graph sparsification algorithm derived from the seminal $\epsilon$-net theory, which is also of independent interest. As byproducts, our result deduces the first deterministic fault-tolerant approximate distance labeling scheme with a non-trivial performance guarantee and an improved deterministic fault-tolerant compact routing. The authors believe that our new technique is potentially useful in the future exploration of more efficient FTC labeling schemes and other related applications based on graph sketches.

Citations (3)

Summary

We haven't generated a summary for this paper yet.