Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Spatio-Temporal Attentive Network for Video-Based Crowd Counting (2208.11339v1)

Published 24 Aug 2022 in cs.CV

Abstract: Automatic people counting from images has recently drawn attention for urban monitoring in modern Smart Cities due to the ubiquity of surveillance camera networks. Current computer vision techniques rely on deep learning-based algorithms that estimate pedestrian densities in still, individual images. Only a bunch of works take advantage of temporal consistency in video sequences. In this work, we propose a spatio-temporal attentive neural network to estimate the number of pedestrians from surveillance videos. By taking advantage of the temporal correlation between consecutive frames, we lowered state-of-the-art count error by 5% and localization error by 7.5% on the widely-used FDST benchmark.

Citations (7)

Summary

We haven't generated a summary for this paper yet.