Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$\fracρ{1-ε}$-approximate pure Nash equilibria algorithms for weighted congestion games and their runtimes (2208.11309v1)

Published 24 Aug 2022 in cs.GT and math.DS

Abstract: This paper concerns computing approximate pure Nash equilibria in weighted congestion games, which has been shown to be PLS-complete. With the help of $\hat{\Psi}$-game and approximate potential functions, we propose two algorithms based on best response dynamics, and prove that they efficiently compute $\frac{\rho}{1-\epsilon}$-approximate pure Nash equilibria for $\rho= d!$ and $\rho =\frac{2\cdot W\cdot(d+1)}{2\cdot W+d+1}\le {d + 1}$, respectively, when the weighted congestion game has polynomial latency functions of degree at most $d \ge 1$ and players' weights are bounded from above by a constant $W \ge 1$. This improves the recent work of Feldotto et al.[2017] and Giannakopoulos et al. [2022] that showed efficient algorithms for computing $d{d+o(d)}$-approximate pure Nash equilibria.

Summary

We haven't generated a summary for this paper yet.