Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards cumulative race time regression in sports: I3D ConvNet transfer learning in ultra-distance running events (2208.11191v1)

Published 23 Aug 2022 in cs.CV

Abstract: Predicting an athlete's performance based on short footage is highly challenging. Performance prediction requires high domain knowledge and enough evidence to infer an appropriate quality assessment. Sports pundits can often infer this kind of information in real-time. In this paper, we propose regressing an ultra-distance runner cumulative race time (CRT), i.e., the time the runner has been in action since the race start, by using only a few seconds of footage as input. We modified the I3D ConvNet backbone slightly and trained a newly added regressor for that purpose. We use appropriate pre-processing of the visual input to enable transfer learning from a specific runner. We show that the resulting neural network can provide a remarkable performance for short input footage: 18 minutes and a half mean absolute error in estimating the CRT for runners who have been in action from 8 to 20 hours. Our methodology has several favorable properties: it does not require a human expert to provide any insight, it can be used at any moment during the race by just observing a runner, and it can inform the race staff about a runner at any given time.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
Citations (6)