Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Structural Causal Shape Models (2208.10950v1)

Published 23 Aug 2022 in cs.CV and cs.LG

Abstract: Causal reasoning provides a language to ask important interventional and counterfactual questions beyond purely statistical association. In medical imaging, for example, we may want to study the causal effect of genetic, environmental, or lifestyle factors on the normal and pathological variation of anatomical phenotypes. However, while anatomical shape models of 3D surface meshes, extracted from automated image segmentation, can be reliably constructed, there is a lack of computational tooling to enable causal reasoning about morphological variations. To tackle this problem, we propose deep structural causal shape models (CSMs), which utilise high-quality mesh generation techniques, from geometric deep learning, within the expressive framework of deep structural causal models. CSMs enable subject-specific prognoses through counterfactual mesh generation ("How would this patient's brain structure change if they were ten years older?"), which is in contrast to most current works on purely population-level statistical shape modelling. We demonstrate the capabilities of CSMs at all levels of Pearl's causal hierarchy through a number of qualitative and quantitative experiments leveraging a large dataset of 3D brain structures.

Citations (10)

Summary

We haven't generated a summary for this paper yet.