Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geodesic completeness of pseudo and holomorphic Riemannian metrics on Lie groups (2208.10873v1)

Published 23 Aug 2022 in math.DG

Abstract: This paper is devoted to geodesic completeness of left-invariant metrics for real and complex Lie groups. We start by establishing the Euler-Arnold formalism in the holomorphic setting. We study the real Lie group $\mathrm{SL}(2, \mathbb{R})$ and reobtain the known characterization of geodesic completeness and, in addition, present a detailed study where we investigate the maximum domain of definition of every single geodesic for every possible metric. We investigate completeness and semicompleteness of the complex geodesic flow for left-invariant holomorphic metrics and, in particular, establish a full classification for the Lie group $\mathrm{SL}(2, \mathbb{C})$.

Summary

We haven't generated a summary for this paper yet.