Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

An intelligent algorithmic trading based on a risk-return reinforcement learning algorithm (2208.10707v2)

Published 23 Aug 2022 in cs.LG and q-fin.RM

Abstract: This scientific paper propose a novel portfolio optimization model using an improved deep reinforcement learning algorithm. The objective function of the optimization model is the weighted sum of the expectation and value at risk(VaR) of portfolio cumulative return. The proposed algorithm is based on actor-critic architecture, in which the main task of critical network is to learn the distribution of portfolio cumulative return using quantile regression, and actor network outputs the optimal portfolio weight by maximizing the objective function mentioned above. Meanwhile, we exploit a linear transformation function to realize asset short selling. Finally, A multi-process method is used, called Ape-x, to accelerate the speed of deep reinforcement learning training. To validate our proposed approach, we conduct backtesting for two representative portfolios and observe that the proposed model in this work is superior to the benchmark strategies.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com