Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Massively Parallel Universal Linear Transformations using a Wavelength-Multiplexed Diffractive Optical Network (2208.10362v1)

Published 13 Aug 2022 in cs.NE and physics.optics

Abstract: We report deep learning-based design of a massively parallel broadband diffractive neural network for all-optically performing a large group of arbitrarily-selected, complex-valued linear transformations between an input and output field-of-view, each with N_i and N_o pixels, respectively. This broadband diffractive processor is composed of N_w wavelength channels, each of which is uniquely assigned to a distinct target transformation. A large set of arbitrarily-selected linear transformations can be individually performed through the same diffractive network at different illumination wavelengths, either simultaneously or sequentially (wavelength scanning). We demonstrate that such a broadband diffractive network, regardless of its material dispersion, can successfully approximate N_w unique complex-valued linear transforms with a negligible error when the number of diffractive neurons (N) in its design matches or exceeds 2 x N_w x N_i x N_o. We further report that the spectral multiplexing capability (N_w) can be increased by increasing N; our numerical analyses confirm these conclusions for N_w > 180, which can be further increased to e.g., ~2000 depending on the upper bound of the approximation error. Massively parallel, wavelength-multiplexed diffractive networks will be useful for designing high-throughput intelligent machine vision systems and hyperspectral processors that can perform statistical inference and analyze objects/scenes with unique spectral properties.

Citations (45)

Summary

We haven't generated a summary for this paper yet.