Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing nilpotent Lie algebras that satisfy on converse of the Schur's theorem (2208.10157v1)

Published 22 Aug 2022 in math.RA and math.AC

Abstract: Let $ L $ be a finite dimensional nilpotent Lie algebra and $ d $ be the minimal number generators for $ L/Z(L). $ It is known that $ \dim L/Z(L)=d \dim L{2}-t(L)$ for an integer $ t(L)\geq 0. $ In this paper, we classify all finite dimensional nilpotent Lie algebras $ L $ when $ t(L)\in \lbrace 0, 1, 2 \rbrace.$ We find also a construction, which shows that there exist Lie algebras of arbitrary $ t(L). $

Summary

We haven't generated a summary for this paper yet.