Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Bayesian Nonnegative Matrix Factorization with Implicit Regularizers (2208.10053v1)

Published 22 Aug 2022 in cs.LG

Abstract: We introduce a probabilistic model with implicit norm regularization for learning nonnegative matrix factorization (NMF) that is commonly used for predicting missing values and finding hidden patterns in the data, in which the matrix factors are latent variables associated with each data dimension. The nonnegativity constraint for the latent factors is handled by choosing priors with support on the nonnegative subspace, e.g., exponential density or distribution based on exponential function. Bayesian inference procedure based on Gibbs sampling is employed. We evaluate the model on several real-world datasets including Genomics of Drug Sensitivity in Cancer (GDSC $IC_{50}$) and Gene body methylation with different sizes and dimensions, and show that the proposed Bayesian NMF GL$22$ and GL$\infty$ models lead to robust predictions for different data values and avoid overfitting compared with competitive Bayesian NMF approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.