Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non--regular McKean--Vlasov equations and calibration problem in local stochastic volatility models (2208.09986v2)

Published 21 Aug 2022 in math.PR, math.AP, and q-fin.MF

Abstract: In order to deal with the question of the existence of a calibrated local stochastic volatility model in finance, we investigate a class of McKean--Vlasov equations where a minimal continuity assumption is imposed on the coefficients. Namely, the drift coefficient and, in particular, the volatility coefficient are not necessarily continuous in the measure variable for the Wasserstein topology. In this paper, we provide an existence result and show an approximation by $N$--particle system or propagation of chaos for this type of McKean--Vlasov equations. As a direct result, we are able to deduce the existence of a calibrated local stochastic volatility model for an appropriate choice of stochastic volatility parameters. The associated propagation of chaos result is also proved.

Summary

We haven't generated a summary for this paper yet.