Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable mRMR feature selection to handle high dimensional datasets: Vertical partitioning based Iterative MapReduce framework (2208.09901v2)

Published 21 Aug 2022 in cs.DC

Abstract: While building machine learning models, Feature selection (FS) stands out as an essential preprocessing step used to handle the uncertainty and vagueness in the data. Recently, the minimum Redundancy and Maximum Relevance (mRMR) approach has proven to be effective in obtaining the irredundant feature subset. Owing to the generation of voluminous datasets, it is essential to design scalable solutions using distributed/parallel paradigms. MapReduce solutions are proven to be one of the best approaches to designing fault-tolerant and scalable solutions. This work analyses the existing MapReduce approaches for mRMR feature selection and identifies the limitations thereof. In the current study, we proposed VMR_mRMR, an efficient vertical partitioning-based approach using a memorization approach, thereby overcoming the extant approaches limitations. The experiment analysis says that VMR_mRMR significantly outperformed extant approaches and achieved a better computational gain (C.G). In addition, we also conducted a comparative analysis with the horizontal partitioning approach HMR_mRMR [1] to assess the strengths and limitations of the proposed approach.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets