Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semiconic Idempotent Logic II: Beth Definability and Deductive Interpolation (2208.09724v3)

Published 20 Aug 2022 in math.LO, cs.LO, and math.RA

Abstract: Semiconic idempotent logic sCI is a common generalization of intuitionistic logic, semilinear idempotent logic sLI, and in particular relevance logic with mingle. We establish the projective Beth definability property and the deductive interpolation property for many extensions of sCI, and identify extensions where these properties fail. We achieve these results by studying the (strong) amalgamation property and the epimorphism-surjectivity property for the corresponding algebraic semantics, viz. semiconic idempotent residuated lattices. Our study is made possible by the structural decomposition of conic idempotent models achieved in the prequel, as well as a detailed analysis of the structure of idempotent residuated chains serving as index sets in this decomposition. Here we study the latter on two levels: as certain enriched Galois connections and as enhanced monoidal preorders. Using this, we show that although conic idempotent residuated lattices do not have the amalgamation property, the natural class of rigid and conjunctive conic idempotent residuated lattices has the strong amalgamation property, and thus has surjective epimorphisms. This extends to the variety generated by rigid and conjunctive conic idempotent residuated lattices, and we establish the (strong) amalgamation and epimorphism-surjectivity properties for several important subvarieties. Using the algebraizability of sCI, this yields the deductive interpolation property and the projective Beth definability property for the corresponding substructural logics extending sCI.

Citations (3)

Summary

We haven't generated a summary for this paper yet.