Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trigger-free Event Detection via Derangement Reading Comprehension (2208.09659v1)

Published 20 Aug 2022 in cs.CL, cs.AI, and cs.LG

Abstract: Event detection (ED), aiming to detect events from texts and categorize them, is vital to understanding actual happenings in real life. However, mainstream event detection models require high-quality expert human annotations of triggers, which are often costly and thus deter the application of ED to new domains. Therefore, in this paper, we focus on low-resource ED without triggers and aim to tackle the following formidable challenges: multi-label classification, insufficient clues, and imbalanced events distribution. We propose a novel trigger-free ED method via Derangement mechanism on a machine Reading Comprehension (DRC) framework. More specifically, we treat the input text as Context and concatenate it with all event type tokens that are deemed as Answers with an omitted default question. So we can leverage the self-attention in pre-trained LLMs to absorb semantic relations between input text and the event types. Moreover, we design a simple yet effective event derangement module (EDM) to prevent major events from being excessively learned so as to yield a more balanced training process. The experiment results show that our proposed trigger-free ED model is remarkably competitive to mainstream trigger-based models, showing its strong performance on low-source event detection.

Citations (1)

Summary

We haven't generated a summary for this paper yet.