Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamical transitions and aging in the superdiffusive Pomeau-Manneville map (2208.09458v2)

Published 19 Aug 2022 in nlin.CD and cond-mat.stat-mech

Abstract: The Pomeau-Manneville map is a paradigmatic intermittent dynamical system exhibiting weak chaos and anomalous dynamics. In this paper we analyse the parameter dependence of superdiffusion for the map lifted periodically onto the real line. From numerical simulations we compute the generalised diffusion coefficient (GDC) of this model as a function of the map's nonlinearity parameter. We identify two singular dynamical transitions in the GDC, one where it diverges to infinity, and a second one where it is fully suppressed. Using the continuous-time random walk theory of L\'evy walks we calculate an analytic expression for the GDC and show that it qualitatively reproduces these two transitions. Quantitatively it systematically deviates from the deterministic dynamics for small parameter values, which we explain by slow decay of velocity correlations. Interestingly, imposing aging onto the dynamics in simulations eliminates the dynamical transition that led to suppression of the GDC, thus yielding a non-trivial change in the parameter dependence of superdiffusion. This also applies to a respective intermittent model of subdiffusive dynamics displaying a related transition.

Summary

We haven't generated a summary for this paper yet.