Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An $2\sqrt{k}$-approximation algorithm for minimum power $k$ edge disjoint $st$ -paths (2208.09373v2)

Published 19 Aug 2022 in cs.DS

Abstract: In minimum power network design problems we are given an undirected graph $G=(V,E)$ with edge costs ${c_e:e \in E}$. The goal is to find an edge set $F\subseteq E$ that satisfies a prescribed property of minimum power $p_c(F)=\sum_{v \in V} \max {c_e: e \in F \mbox{ is incident to } v}$. In the Min-Power $k$ Edge Disjoint $st$-Paths problem $F$ should contains $k$ edge disjoint $st$-paths. The problem admits a $k$-approximation algorithm, and it was an open question whether it admits approximation ratio sublinear in $k$ even for unit costs. We give a $2\sqrt{2k}$-approximation algorithm for general costs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. H. M. Alqahtani and T. Erlebach. Approximation algorithms for disjoint s⁢t𝑠𝑡stitalic_s italic_t-paths with minimum activation cost. In Algorithms and Complexity, 8th International Conference (CIAC), pages 1–12, 2013.
  2. H. M. Alqahtani and T. Erlebach. Minimum activation cost node-disjoint paths in graphs with bounded treewidth. In 40th Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), pages 65–76, 2014.
  3. Power efficient range assignment for symmetric connectivity in static ad-hoc wireless networks. Wireless Networks, 12(3):287–299, 2006.
  4. Detecting high log-densities: an O⁢(n1/4)𝑂superscript𝑛14O(n^{1/4})italic_O ( italic_n start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT ) approximation for densest k𝑘kitalic_k-subgraph. In 42nd ACM Symposium on Theory of Computing (STOC), pages 201–210, 2010.
  5. On critically k𝑘kitalic_k-edge-connected graphs. Australas. J Comb., 2:101–110, 1990.
  6. M. C. Cai. Minimally k𝑘kitalic_k-connected graphs of low order and maximal size. Discrete Math., 41(3):229–234, 1982.
  7. M. C. Cai. The maximal size of graphs with at most k edge-disjoint paths connecting any two adjacent vertices. Discrete Math., 85(1):43–52, 1990.
  8. W. Chen and N. Huang. The strongly connecting problem on multi-hop packet radio networks. IEEE Trans. on Commun., 37(3):293–295, 1989.
  9. Power optimization for connectivity problems. Math. Progr., 110(1):195–208, 2007.
  10. On fixed cost k𝑘kitalic_k-flow problems. Theory of Computing Systems, 58(1):4–18, 2016.
  11. Power consumption in packet radio networks. Theor. Comput. Sci., 243(1-2):289–305, 2000.
  12. Y. Lando and Z. Nutov. On minimum power connectivity problems. J. Discrete Algorithms, 8(2):164–173, 2010.
  13. W. Mader. Minimale n𝑛nitalic_n-fach kantenzusammenhängende graphen. Mathematische Annalen, 191:21–28, 1971.
  14. W. Mader. Über minimal n𝑛nitalic_n-fach zusammenhängende, unendliche graphen und ein extremalproblem. Arch. Math. (Basel), 23:553–560, 1972.
  15. Algorithmic aspects of minimum energy edge-disjoint paths in wireless networks. In 33rd Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), pages 410–421, 2007.
  16. P. Manurangsi. Almost-polynomial ratio ETH-hardness of approximating densest k𝑘kitalic_k-subgraph. In 49th Symposium on Theory of Computing (STOC), pages 954–961, 2017.
  17. Z. Nutov. Approximating minimum power covers of intersecting families and directed edge-connectivity problems. Theoretical Computer Science, 411(26-28):2502–2512, 2010.
  18. Z. Nutov. Approximating Steiner networks with node-weights. SIAM J. Computing, 39(7):3001–3022, 2010.
  19. Z. Nutov. Activation network design problems. In T. F. Gonzalez, editor, Handbook on Approximation Algorithms and Metaheuristics, Second Edition, volume 2, chapter 15. Chapman & Hall/CRC, 2018.
  20. Z. Nutov and D. Kahba. A 1.5-approximation algorithms for activating 2 disjoint s⁢t𝑠𝑡stitalic_s italic_t-paths. CoRR, abs/2307.12646, 2023. URL: https://doi.org/10.48550/arXiv.2307.12646, arXiv:2307.12646.
  21. Zeev Nutov. On extremal k𝑘kitalic_k-outconnected graphs. Discrete Math., 308(12):2533–2543, 2008.
  22. D. Panigrahi. Survivable network design problems in wireless networks. In 22nd Symp. on Discr. Algorithms (SODA), pages 1014–1027, 2011.
  23. V. Rodoplu and T. H. Meng. Minimum energy mobile wireless networks. In IEEE International Conference on Communications (ICC), pages 1633–1639, 1998.
  24. Power-aware broadcasting in mobile ad hoc networks. In Proceedings of IEEE PIMRC, 1999.
  25. A. Srinivas and E. H. Modiano. Finding minimum energy disjoint paths in wireless ad-hoc networks. Wireless Networks, 11(4):401–417, 2005.
  26. On the construction of energy-efficient broadcast and multicast trees in wireless networks. In Proc. IEEE INFOCOM, pages 585–594, 2000.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com