Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quadratic Integral Penalty Methods for Numerical Trajectory Optimization (2208.09264v1)

Published 19 Aug 2022 in math.OC

Abstract: This thesis presents new mathematical algorithms for the numerical solution of a mathematical problem class called \emph{dynamic optimization problems}. These are mathematical optimization problems, i.e., problems in which numbers are sought that minimize an expression subject to obeying equality and inequality constraints. Dynamic optimization problems are distinct from non-dynamic problems in that the sought numbers may vary over one independent variable. This independent variable can be thought of as, e.g., time. This thesis presents three methods, with emphasis on algorithms, convergence analysis, and computational demonstrations. The first method is a direct transcription method that is based on an integral quadratic penalty term. The purpose of this method is to avoid numerical artifacts such as ringing or erroneous/spurious solutions that may arise in direct collocation methods. The second method is a modified augmented Lagrangian method that leverages ideas from augmented Lagrangian methods for the solution of optimization problems with large quadratic penalty terms, such as they arise from the prior direct transcription method. Lastly, we present a direct transcription method with integral quadratic penalties and integral logarithmic barriers. All methods are motivated with applications and examples, analyzed with complete proofs for their convergence, and practically verified with numerical experiments.

Summary

We haven't generated a summary for this paper yet.