Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NeIF: Representing General Reflectance as Neural Intrinsics Fields for Uncalibrated Photometric Stereo (2208.08897v2)

Published 18 Aug 2022 in cs.CV

Abstract: Uncalibrated photometric stereo (UPS) is challenging due to the inherent ambiguity brought by unknown light. Existing solutions alleviate the ambiguity by either explicitly associating reflectance to light conditions or resolving light conditions in a supervised manner. This paper establishes an implicit relation between light clues and light estimation and solves UPS in an unsupervised manner. The key idea is to represent the reflectance as four neural intrinsics fields, i.e., position, light, specular, and shadow, based on which the neural light field is implicitly associated with light clues of specular reflectance and cast shadow. The unsupervised, joint optimization of neural intrinsics fields can be free from training data bias as well as accumulating error, and fully exploits all observed pixel values for UPS. Our method achieves a superior performance advantage over state-of-the-art UPS methods on public and self-collected datasets, under regular and challenging setups. The code will be released soon.

Summary

We haven't generated a summary for this paper yet.