Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Varifolds on Meshes for Mapping Spatial Transcriptomics (2208.08376v3)

Published 17 Aug 2022 in math.NA and cs.NA

Abstract: Advances in the development of largely automated microscopy methods such as MERFISH for imaging cellular structures in mouse brains are providing spatial detection of micron resolution gene expression. While there has been tremendous progress made in the field Computational Anatomy (CA) to perform diffeomorphic mapping technologies at the tissue scales for advanced neuroinformatic studies in common coordinates, integration of molecular- and cellular-scale populations through statistical averaging via common coordinates remains yet unattained. This paper describes the first set of algorithms for calculating geodesics in the space of diffeomorphisms, what we term Image-Varifold LDDMM,extending the family of large deformation diffeomorphic metric mapping (LDDMM) algorithms to accommodate the "copy and paste" varifold action of particles which extends consistently to the tissue scales. We represent the brain data as geometric measures, termed as {\em image varifolds} supported by a large number of unstructured points, % (i.e., not aligned on a 2D or 3D grid), each point representing a small volume in space % (which may be incompletely described) and carrying a list of densities of {\em features} elements of a high-dimensional feature space. The shape of image varifold brain spaces is measured by transforming them by diffeomorphisms. The metric between image varifolds is obtained after embedding these objects in a linear space equipped with the norm, yielding a so-called "chordal metric."

Citations (4)

Summary

We haven't generated a summary for this paper yet.