Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge Graph Curation: A Practical Framework (2208.08130v1)

Published 17 Aug 2022 in cs.DB, cs.AI, and cs.IR

Abstract: Knowledge Graphs (KGs) have shown to be very important for applications such as personal assistants, question-answering systems, and search engines. Therefore, it is crucial to ensure their high quality. However, KGs inevitably contain errors, duplicates, and missing values, which may hinder their adoption and utility in business applications, as they are not curated, e.g., low-quality KGs produce low-quality applications that are built on top of them. In this vision paper, we propose a practical knowledge graph curation framework for improving the quality of KGs. First, we define a set of quality metrics for assessing the status of KGs, Second, we describe the verification and validation of KGs as cleaning tasks, Third, we present duplicate detection and knowledge fusion strategies for enriching KGs. Furthermore, we give insights and directions toward a better architecture for curating KGs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Elwin Huaman (7 papers)
  2. Dieter Fensel (19 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.