Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint ergodicity of piecewise monotone interval maps (2208.08059v1)

Published 17 Aug 2022 in math.DS

Abstract: For $i = 0, 1, 2, \dots, k$, let $\mu_i$ be a Borel probability measure on $[0,1]$ which is equivalent to Lebesgue measure $\lambda$ and let $T_i:[0,1] \rightarrow [0,1]$ be $\mu_i$-preserving ergodic transformations. We say that transformations $T_0, T_1, \dots, T_k$ are uniformly jointly ergodic with respect to $(\lambda; \mu_0, \mu_1, \dots, \mu_k)$ if for any $f_0, f_1, \dots, f_k \in L{\infty}$, [ \lim\limits_{N -M \rightarrow \infty} \frac{1}{N-M } \sum\limits_{n=M}{N-1} f_0 ( T_0{n} x) \cdot f_1 (T_1n x) \cdots f_k (T_kn x) = \prod_{i=0}k \int f_i \, d \mu_i \quad \text{ in } L2(\lambda). ] We establish convenient criteria for uniform joint ergodicity and obtain numerous applications, most of which deal with interval maps. Here is a description of one such application. Let $T_G$ denote the Gauss map, $T_G(x) = \frac{1}{x} \, (\bmod \, 1)$, and, for $\beta >1$, let $T_{\beta}$ denote the $\beta$-transformation defined by $T_{\beta} x = \beta x \, (\bmod \,1)$. Let $T_0$ be an ergodic interval exchange transformation. Let $\beta_1 , \cdots , \beta_k$ be distinct real numbers with $\beta_i >1$ and assume that $\log \beta_i \ne \frac{\pi2}{6 \log 2}$ for all $i = 1, 2, \dots, k$. Then for any $f_{0}, f_1, f_{2}, \dots, f_{k+1} \in L{\infty} (\lambda)$, \begin{equation*} \begin{split} \lim\limits_{N -M \rightarrow \infty} \frac{1}{N -M } \sum\limits_{n=M}{N-1} & f_{0} (T_0n x) \cdot f_{1} (T_{\beta_1}n x) \cdots f_{k} (T_{\beta_k}n x) \cdot f_{k+1} (T_Gn x) &= \int f_{0} \, d \lambda \cdot \prod_{i=1}k \int f_{i} \, d \mu_{\beta_i} \cdot \int f_{k+1} \, d \mu_G \quad \text{in } L{2}(\lambda). \end{split} \end{equation*} We also study the phenomenon of joint mixing. Among other things we establish joint mixing for skew tent maps and for restrictions of finite Blaschke products to the unit circle.

Summary

We haven't generated a summary for this paper yet.