Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Imperceptible and Robust Backdoor Attack in 3D Point Cloud (2208.08052v1)

Published 17 Aug 2022 in cs.CV and cs.CR

Abstract: With the thriving of deep learning in processing point cloud data, recent works show that backdoor attacks pose a severe security threat to 3D vision applications. The attacker injects the backdoor into the 3D model by poisoning a few training samples with trigger, such that the backdoored model performs well on clean samples but behaves maliciously when the trigger pattern appears. Existing attacks often insert some additional points into the point cloud as the trigger, or utilize a linear transformation (e.g., rotation) to construct the poisoned point cloud. However, the effects of these poisoned samples are likely to be weakened or even eliminated by some commonly used pre-processing techniques for 3D point cloud, e.g., outlier removal or rotation augmentation. In this paper, we propose a novel imperceptible and robust backdoor attack (IRBA) to tackle this challenge. We utilize a nonlinear and local transformation, called weighted local transformation (WLT), to construct poisoned samples with unique transformations. As there are several hyper-parameters and randomness in WLT, it is difficult to produce two similar transformations. Consequently, poisoned samples with unique transformations are likely to be resistant to aforementioned pre-processing techniques. Besides, as the controllability and smoothness of the distortion caused by a fixed WLT, the generated poisoned samples are also imperceptible to human inspection. Extensive experiments on three benchmark datasets and four models show that IRBA achieves 80%+ ASR in most cases even with pre-processing techniques, which is significantly higher than previous state-of-the-art attacks.

Citations (28)

Summary

We haven't generated a summary for this paper yet.