Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Artificial Intelligence Empowered Multiple Access for Ultra Reliable and Low Latency THz Wireless Networks (2208.08039v1)

Published 17 Aug 2022 in eess.SP, cs.AI, cs.LG, and cs.NI

Abstract: Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era. However, due to the directional nature and the line-of-sight demand of THz links, as well as the ultra-dense deployment of THz networks, a number of challenges that the medium access control (MAC) layer needs to face are created. In more detail, the need of rethinking user association and resource allocation strategies by incorporating AI capable of providing "real-time" solutions in complex and frequently changing environments becomes evident. Moreover, to satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required. Motivated by this, this article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management, while maximizing systems' reliability through blockage minimization. In more detail, a fast and centralized joint user association, radio resource allocation, and blockage avoidance by means of a novel metaheuristic-machine learning framework is documented, that maximizes the THz networks performance, while minimizing the association latency by approximately three orders of magnitude. To support, within the access point (AP) coverage area, mobility management and blockage avoidance, a deep reinforcement learning (DRL) approach for beam-selection is discussed. Finally, to support user mobility between coverage areas of neighbor APs, a proactive hand-over mechanism based on AI-assisted fast channel prediction is~reported.

Citations (3)

Summary

We haven't generated a summary for this paper yet.