Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A General Framework for Fair Allocation under Matroid Rank Valuations (2208.07311v3)

Published 15 Aug 2022 in cs.GT

Abstract: We study the problem of fairly allocating a set of indivisible goods among agents with matroid rank valuations -- every good provides a marginal value of $0$ or $1$ when added to a bundle and valuations are submodular. We generalize the Yankee Swap algorithm to create a simple framework, called General Yankee Swap, that can efficiently compute allocations that maximize any justice criterion (or fairness objective) satisfying some mild assumptions. Along with maximizing a justice criterion, General Yankee Swap is guaranteed to maximize utilitarian social welfare, ensure strategyproofness and use at most a quadratic number of valuation queries. We show how General Yankee Swap can be used to compute allocations for five different well-studied justice criteria: (a) Prioritized Lorenz dominance, (b) Maximin fairness, (c) Weighted leximin, (d) Max weighted Nash welfare, and (e) Max weighted $p$-mean welfare. In particular, our framework provides the first polynomial time algorithms to compute weighted leximin, max weighted Nash welfare and max weighted $p$-mean welfare allocations for agents with matroid rank valuations.

Citations (13)

Summary

We haven't generated a summary for this paper yet.